Log in
Search
Wiki Search
Latest topics
Most Viewed Topics
Statistics
We have 535 registered usersThe newest registered user is jecase
Our users have posted a total of 478 messages in 434 subjects
Keywords
POLL
Your IP address
GATE SYLLABUS FOR ELECTRONICS AND COMMUNICATION
:: CAREER :: GATE :: GATE SYLLABUS
Page 1 of 1
GATE SYLLABUS FOR ELECTRONICS AND COMMUNICATION
Gate Syllabus for Electronics And Communication
NETWORK: Network graphs:
matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methodsl; nodal and mesh analysis. Network theorems; superposition, Thevenin and Nortan's, maximum power transfer, wye-delta transformation, steady state sinusoidal analysis using phasors, fourier series, linear constant coefficient differential and difference equations; time domain analysis of simple RLC circuits. laplace and Z transforms: frequency domain analysis of RLC circuits, convolution,2-port network parameters, driving point and transfer functions, state equation for networks.
ANALOG CIRCUITS:
characteristics and equivalent circuits(large and small singnal) of diodes,BJT,JFETs and MOSFET simple diode circuits: clipping, clamping, rectifier, biasing and bias stability of transistior and FET amplifiers. Amplifiers: single and multi-stage, differential, operational, feedback and power. Analysis of amplifers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.
DIGITAL CIRCUITS:
Boolean algebra; minimization of boolean functions; logic gates; digital IC families( DTL,TTL,ECL,MOS,CMOS). Combinational circuits: airthmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Microprocessor (8085): architecture, programming, memory and I/O interfacing.
CONTROL SYSTEMS:
Basic control system components; block diagrammatic descripption,reduction of block diagrams,properties of systems: linearity,time-invariance,stability,causality.Open loop and closed loop (feedback) systems.Special properties of linear time- invariance(LTI) systems-transfer function, impulse responce,poles,zeros,their significance, and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steaty state analysis of LTI system and frequency responce. Tools and techniques for LTI control system analysis: Root, loci, Routh_Hurwitz criterion, Bode and Nyquist plots; Control system compensators: elements of lead and lag compensations, elements ofPropotional-integral.
-Derivative(PID) control. State variable representation and solution of state equation for LTI systems.
COMMUNICATION SYSTEMS:
Fourier analysis of signals - amplitude, phase and power spectrum, auto-correlation and cross-correlation and their Fourier transforms. Signal transmission through linear time-invariant(LTI) systems,impulse responce and frequency responce,group delay phase delay. Analog modulation systems-amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers, elements of hardwares realizations of analog communications systems. Basic sampling theorems. Pulse code modulation(PCM), differential pulse code modulation(DPCM), delta modulation(DM). Digital modulation schemes: amplitude, phase and frequency shift keying schemes(ASK,PSK,FSK). Multiplexing - time division and frequency division. Additive Gaussian noise; characterization using correlation, probability density function(PDF),power spectral density(PSD). Signal- to-noise rasio(SNR) calculations for amplitude modulation(AM) and frequency modulation(FM) for low noise conditions.
ELECTROMAGNETICS:
Elements of vector calculus: gradient, dicergence and curl; Gauss and strokes theorems, maxwells equation: differential and integral forms. Wave equation. Poynting vector. Plane wavwes: propagation through various media; reflection and refraction; phase and group velocity; skin depth Transmission lines: Characteristic impedence; impedence transformation; smith chart; impedence matching pulse excitation. Wave guides: modes in rectangular waveguides; boundary conditions; cutt-off frequencies; dipersion relations. Antennas; Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem; antenna gain.
SOURCE: onestopgate.com
NETWORK: Network graphs:
matrices associated with graphs; incidence, fundamental cut set and fundamental circuit matrices. Solution methodsl; nodal and mesh analysis. Network theorems; superposition, Thevenin and Nortan's, maximum power transfer, wye-delta transformation, steady state sinusoidal analysis using phasors, fourier series, linear constant coefficient differential and difference equations; time domain analysis of simple RLC circuits. laplace and Z transforms: frequency domain analysis of RLC circuits, convolution,2-port network parameters, driving point and transfer functions, state equation for networks.
ANALOG CIRCUITS:
characteristics and equivalent circuits(large and small singnal) of diodes,BJT,JFETs and MOSFET simple diode circuits: clipping, clamping, rectifier, biasing and bias stability of transistior and FET amplifiers. Amplifiers: single and multi-stage, differential, operational, feedback and power. Analysis of amplifers; frequency response of amplifiers. Simple op-amp circuits. Filters. Sinusoidal oscillators; criterion for oscillation; single-transistor and op-amp configurations. Function generators and wave-shaping circuits, Power supplies.
DIGITAL CIRCUITS:
Boolean algebra; minimization of boolean functions; logic gates; digital IC families( DTL,TTL,ECL,MOS,CMOS). Combinational circuits: airthmetic circuits, code converters, multiplexers and decoders. Sequential circuits: latches and flip-flops, counters and shift-registers. Comparators, timers, multivibrators. Sample and hold circuits, ADCs and DACs. Semiconductor memories. Microprocessor (8085): architecture, programming, memory and I/O interfacing.
CONTROL SYSTEMS:
Basic control system components; block diagrammatic descripption,reduction of block diagrams,properties of systems: linearity,time-invariance,stability,causality.Open loop and closed loop (feedback) systems.Special properties of linear time- invariance(LTI) systems-transfer function, impulse responce,poles,zeros,their significance, and stability analysis of these systems. Signal flow graphs and their use in determining transfer functions of systems; transient and steaty state analysis of LTI system and frequency responce. Tools and techniques for LTI control system analysis: Root, loci, Routh_Hurwitz criterion, Bode and Nyquist plots; Control system compensators: elements of lead and lag compensations, elements ofPropotional-integral.
-Derivative(PID) control. State variable representation and solution of state equation for LTI systems.
COMMUNICATION SYSTEMS:
Fourier analysis of signals - amplitude, phase and power spectrum, auto-correlation and cross-correlation and their Fourier transforms. Signal transmission through linear time-invariant(LTI) systems,impulse responce and frequency responce,group delay phase delay. Analog modulation systems-amplitude and angle modulation and demodulation systems, spectral analysis of these operations, superheterodyne receivers, elements of hardwares realizations of analog communications systems. Basic sampling theorems. Pulse code modulation(PCM), differential pulse code modulation(DPCM), delta modulation(DM). Digital modulation schemes: amplitude, phase and frequency shift keying schemes(ASK,PSK,FSK). Multiplexing - time division and frequency division. Additive Gaussian noise; characterization using correlation, probability density function(PDF),power spectral density(PSD). Signal- to-noise rasio(SNR) calculations for amplitude modulation(AM) and frequency modulation(FM) for low noise conditions.
ELECTROMAGNETICS:
Elements of vector calculus: gradient, dicergence and curl; Gauss and strokes theorems, maxwells equation: differential and integral forms. Wave equation. Poynting vector. Plane wavwes: propagation through various media; reflection and refraction; phase and group velocity; skin depth Transmission lines: Characteristic impedence; impedence transformation; smith chart; impedence matching pulse excitation. Wave guides: modes in rectangular waveguides; boundary conditions; cutt-off frequencies; dipersion relations. Antennas; Dipole antennas; antenna arrays; radiation pattern; reciprocity theorem; antenna gain.
SOURCE: onestopgate.com
Similar topics
» GATE SYLLABUS FOR MATHEMATICS
» GATE SYLLABUS FOR CHEMISTRY
» GATE SYLLABUS FOR ELECTRICAL ENGINEERING
» GATE SYLLABUS FOR ENGINEERING SCIENCES
» GATE SYLLABUS FOR GEOLOGY AND GEOPHYSICS
» GATE SYLLABUS FOR CHEMISTRY
» GATE SYLLABUS FOR ELECTRICAL ENGINEERING
» GATE SYLLABUS FOR ENGINEERING SCIENCES
» GATE SYLLABUS FOR GEOLOGY AND GEOPHYSICS
:: CAREER :: GATE :: GATE SYLLABUS
Page 1 of 1
Permissions in this forum:
You cannot reply to topics in this forum
Mon May 20, 2013 3:30 pm by prabakumar
» mid questions
Sat Apr 07, 2012 9:58 pm by ravitejachalla
» important questions
Sat Apr 07, 2012 8:04 pm by tony
» racha blockbuster written all over. strong reports coming
Tue Apr 03, 2012 10:18 pm by tony
» celebration for 300 users
Tue Apr 03, 2012 9:36 pm by tony
» 8051 Microcontrollers
Sun Feb 26, 2012 8:02 pm by shanthipriya
» panja video songs racha quality
Sat Dec 17, 2011 1:21 am by tony
» first look of OO kodthaara ulikki padthaara?
Fri Dec 16, 2011 1:35 am by tony
» pawan kalyan panja HQ DVD quality rip
Thu Dec 15, 2011 4:22 pm by tony
» latest joke in movie circles
Wed Dec 14, 2011 8:39 pm by tony