Log in
Search
Wiki Search
Latest topics
Most Viewed Topics
Statistics
We have 535 registered usersThe newest registered user is jecase
Our users have posted a total of 478 messages in 434 subjects
Keywords
POLL
Your IP address
GATE SYLLABUS AEROSPACE ENGINEERING
:: CAREER :: GATE :: GATE SYLLABUS
Page 1 of 1
GATE SYLLABUS AEROSPACE ENGINEERING
Gate Syllabus for Aerospace Engineering
ENGINEERING MATHEMATICS
Linear Algebra: Matrix algebra, systems of linear equations, eigen values and eigen vectors.
Calculus: Functions of single variable, limit, continuity and differentiability, mean value theorems, evaluation of definite and improper integrals, partial derivatives, total derivative, maxima and minima, gradient, divergence and curl, vector identities, directional derivatives, line, surface and volume integrals. Theorems of Stokes, Gauss and Green.
Differential Calculus: First order linear and nonlinear equations, higher order linear ODEs with constant coefficients, Cauchy and Euler equations, initial and boundary value problems, Laplace transforms. Partial differential equations and separation of variables methods.
Numerical methods: Numerical solution of linear and nonlinear algebraic equations, integration by trapezoidal and Simpson rule, single and multi-step methods for differential equations.
FLIGHT MECHANICS
Atmosphere: Properties, standard atmosphere. Classification of aircraft. Airplane (fixed wing aircraft) configuration and various parts.
Airplane performance:Pressure altitude; equivalent, calibrated, indicated air speeds; Primary flight instruments: Altimeter, ASI, VSI, Turn-bank indicator. Drag polar; take off and landing; steady climb & descent,-absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-n diagram; Winds: head, tail & cross winds.
Static stability: Angle of attack, sideslip; roll, pitch & yaw controls; longitudinal stick fixed & free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability. Wing dihedral, sweep & position; hinge moments, stick forces.
Dynamic stability: Euler angles; Equations of motion; aerodynamic forces and moments, stability & control derivatives; decoupling of longitudinal and lat-directional dynamics; longitudinal modes; lateral-directional modes.
SPACE DYNAMICS
Central force motion, determination of trajectory and orbital period in simple cases. Orbit transfer, in-plane and out-of-plane. Elements of rocket motor performance.
AERODYNAMICS
Basic Fluid Mechanics: Incompressible irrotational flow, Helmholtz and Kelvin theorem, singularities and superposition, viscous flows, boundary layer on a flat plate.
Airfoils and wings: Classification of airfoils, aerodynamic characteristics, high lift devices, Kutta Joukowski theorem; lift generation; thin airfoil theory; wing theory; induced drag; qualitative treatment of low aspect ratio wings.
Viscous Flows: Flow separation, introduction to turbulence, transition, structure of a turbulent boundary layer.
Compressible Flows: Dynamics & Thermodynamics of I-D flow, isentropic flow, normal shock, oblique shock, Prandtl-Meyer flow, flow in nozzles and diffusers, inviscid flow in a c-d nozzle, flow in diffusers. subsonic and supersonic airfoils, compressibility effects on lift and drag, critical and drag divergence Mach number, wave drag.
Wind Tunnel Testing: Measurement and visualisation techniques.
STRUCTURES
Stress and Strain: Equations of equilibrium, constitutive law, strain-displacement relationship, compatibility equations, plane stress and strain, Airy's stress function.
Flight Vehicle Structures: Characteristics of aircraft structures and materials, torsion, bending and flexural shear. Flexural shear flow in thin-walled sections. Buckling. Failure theories. Loads on aircraft.
Structural Dynamics: Free and forced vibration of discrete systems. Damping and resonance. Dynamics of continuous systems.
PROPULSION
Thermodynamics of Aircraft Gas Turbine engines, thrust and thrust augmentation.
Turbomachinery: Axial compressors and turbines, centrifugal pumps and compressors.
Aerothermodynamics of non rotating propulsion components: Intakes, combustor and nozzle. Thermodynamics of ramjets and scramjets. Elements of rocket propulsion.
SOURCE: onestopgate.com
Similar topics
» GATE SYLLABUS FOR MINING ENGINEERING
» GATE SYLLABUS FOR METTULARGICAL ENGINEERING
» GATE SYLLABUS FOR AGRICULTURAL ENGINEERING
» GATE SYLLABUS FOR CHEMICAL ENGINEERING
» GATE SYLLABUS FOR CIVIL ENGINEERING
» GATE SYLLABUS FOR METTULARGICAL ENGINEERING
» GATE SYLLABUS FOR AGRICULTURAL ENGINEERING
» GATE SYLLABUS FOR CHEMICAL ENGINEERING
» GATE SYLLABUS FOR CIVIL ENGINEERING
:: CAREER :: GATE :: GATE SYLLABUS
Page 1 of 1
Permissions in this forum:
You cannot reply to topics in this forum
Mon May 20, 2013 3:30 pm by prabakumar
» mid questions
Sat Apr 07, 2012 9:58 pm by ravitejachalla
» important questions
Sat Apr 07, 2012 8:04 pm by tony
» racha blockbuster written all over. strong reports coming
Tue Apr 03, 2012 10:18 pm by tony
» celebration for 300 users
Tue Apr 03, 2012 9:36 pm by tony
» 8051 Microcontrollers
Sun Feb 26, 2012 8:02 pm by shanthipriya
» panja video songs racha quality
Sat Dec 17, 2011 1:21 am by tony
» first look of OO kodthaara ulikki padthaara?
Fri Dec 16, 2011 1:35 am by tony
» pawan kalyan panja HQ DVD quality rip
Thu Dec 15, 2011 4:22 pm by tony
» latest joke in movie circles
Wed Dec 14, 2011 8:39 pm by tony